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Abstract. In the symplectic Lagrangian framework we in a new fashion embed an irreducible massive vector–
tensor theory into a gauge invariant system, which has become reducible, by extending the configuration
space to include an additional pair of scalar and vector fields, which give the desired Wess–Zumino action.
A comparison with the BFT Hamiltonian embedding approach is also given.

1 Introduction

The Dirac quantization method [1] has been widely used
in order to quantize a Hamiltonian system involving first-
and second-class constraints. However, the resulting Dirac
brackets may be field-dependent and non-local, and thus
pose serious ordering problems. The BRST quantization [2]
along the lines of Dirac established by Batalin, Fradkin, and
Vilkovisky [3], and then improved in a more tractable and
elegant Hamiltonian embedding by Batalin, Fradkin, and
Tyutin (BFT) [4], does not suffer from these difficulties, as
it relies on a simple Poisson bracket structure. As a result,
this embedding of a second-class system into first-class one
has received much attention in the past decade [5–7].

While the various quantization methods based on the
Hamiltonian formulation have been developed for general
types of gauge theories, Faddeev and Jackiw [8] have in-
troduced an equivalent scheme based on a first order La-
grangian which does not need to classify constraints as
primary, secondary, etc. Since this scheme deals with a
smaller number of constraints than that of Dirac, it has
proved to be relatively simple for using it to find the Dirac
brackets. After this work, there were numerous related
analyses [9–11]. In particular, we had shown that, in this
framework, a gauge non-invariant theory can be embedded
into a gauge invariant one by investigating the properties
of the symplectic two-form matrix and its corresponding
zero modes [12]. Recently, there has occurred some renewed
interest [13–15] in the subject of symplectic embedding in-
cluding non-commutative theories.
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On the other hand, antisymmetric tensor fields, which
first appeared as a mediator of the string interaction [16],
have lead to much interest in an alternative of the Higgs
mechanism [17,18]. With the topologically interacting term
of the form B ∧ F , the physical degree of freedom of the
antisymmetric rank two tensor field B is absorbed by the
vector field, making it massive. This mechanism is consid-
ered generic in string phenomenology [19]. Moreover, vari-
ous dual descriptions between different theories have been
widely studied where the antisymmetric tensor field plays
an important role in the realization of dualities [20, 21].
These dual relations were also independently confirmed
by defining dual operations on the space of pairs of dif-
ferent gauge forms [22]. There was the surprising result
that, like the well-known dual equivalence [23] of the first
order self-dual theory and Maxwell–Chern–Simons theory
in d = 3, they have all shown that the first order master
action even in d = 4 has a dual relation with the Maxwell–
Kalb–Ramond (MKR) theory. Recently, it has been shown
that through the BFT embedding technique the gauge non-
invariant master action is equivalent to the gauge invariant
MKR theory [24]. Very recently, we have generalized their
results to include both the gauge symmetry breaking term
and the topological coupling one [7], resulting in a new
type of Wess–Zumino (WZ) action [25] as well as the usual
Stückelberg one.

This paper is organized as follows. In Sect. 2, we briefly
show the dual relation of the first order master Lagrangian
between the Abelian Proca and the Kalb–Ramond (KR)
massive theories classically by using the equations of mo-
tion. Then, we explicitly carry out the symplectic quanti-
zation for this gauge non-invariant Lagrangian. In Sect. 3,
we embed this master Lagrangian into the desired gauge
invariant one, and we make clear the relation between the
“trivial” zero modes and the symmetry transformations.
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We also explicitly show that one of the “trivial” zero modes
is related to a reducible constraint. In Sect. 4, we compare
the result of the symplectic embedding with the BFT one.
Our conclusion is given in Sect. 5.

2 Symplectic quantization
of the master Lagrangian

In this section, we reconsider the first order Lagrangian [21]
for the Abelian massive vector and tensor fields, and quan-
tize it explicitly through the symplectic scheme. This La-
grangian is not only known to have a dual relation with
the MKR Lagrangian [7,21,22,24], but also plays the role
of a master Lagrangian of the Proca and the KR models.

First, let us briefly review that the following first or-
der Lagrangian

L = −1
4
BµνBµν +

1
2
AµAµ +

1
2m

εµνρσBµν∂ρAσ (2.1)

describes classically the massive Proca and KR theories
simultaneously, i.e., the Lagrangian (2.1) is a master La-
grangian1 of the mentioned two theories. By varying the
Lagrangian with the fields Aµ and Bµν , one obtains their
equations of motion as follows:

Bµν − 1
m

εµνρσ∂ρAσ = 0 ,

Aµ +
1

2m
εµνρσ∂νBρσ = 0 , (2.2)

respectively. By eliminating the antisymmetric Bµν fields
from the Lagrangian (2.1), the Proca model is obtained
as follows:

LProca = − 1
4m2 FµνFµν +

1
2
AµAµ . (2.3)

Similarly, by using the equation of motion for the field Aµ,
one could obtain the KR Lagrangian as follows:

LKR =
1

12m2 GµνσGµνσ − 1
4
BµνBµν . (2.4)

This shows that the first order Lagrangian (2.1) is the
master Lagrangian of the two massive theories at the clas-
sical level.

On the other hand, according to the symplectic scheme
[8, 9], it is easy to find their symplectic brackets in a few
steps equivalent to the Dirac ones in the Hamiltonian for-
mulation:

{A0(x), Ai(y)} = ∂i
xδ(x − y) ,

{Ai(x), πj(y)} = m2δi
jδ(x − y) (2.5)

for the Proca model [14], as well as

{B0i(x), Bjk(y)} = (δij∂k
x − δik∂j

x)δ(x − y) ,

1 For a quantum mechanical treatment, see [21].

{Bij(x), πkl(y)} = m2(δi
kδj

l − δj
kδi

l )δ(x − y) (2.6)

for the KR theory [26].
Now, in order to implement the usual symplectic quan-

tization of the master Lagrangian itself which is composed
of two kinds of fields with different ranks as well as their
topological coupling term, we rewrite the Lagrangian as an
alternating first ordered one from the symmetrized form
of (2.1):

L(0) =
1

4m
εijkBjkȦi − 1

4m
εijkAkḂij − H(0) , (2.7)

where the Hamiltonian is

H(0) =
1
4
BµνBµν − 1

2
AµAµ − 1

m
εijkB0i∂jAk

− 1
2m

A0εijk∂iBjk . (2.8)

Here, we adopt the convention: ε0ijk = εijk, ε123 = +1,
and gµν = (+ − −−). As is clear in the Lagrangian (2.7),
there is no need to introduce additional auxiliary fields
such as momenta because it already has the form of the
first order.

Then, we identify the initial sets of symplectic vari-
ables and their conjugate momenta from the first order
Lagrangian as follows:

ξ(0)α = (Ai, Bij , A0, B0i) ,

a(0)
α =

(
1

4m
εijkBjk,− 1

2m
εijkAk, 0,0T

)
. (2.9)

Note that the coefficients of the fields having a time deriva-
tive in the canonical sector play the roles of momenta, and
the Bij in the symplectic variable ξ(0)α denote the inde-
pendent component fields such as Bij := (B12, B23, B31)
in order, collectively, while any contracted indices are un-
derstood to be summed over unless otherwise mentioned.
From the definition of the symplectic two-form matrix [9]:

fαβ(x, y) =
∂aβ(y)
∂ξα(x)

− ∂aα(x)
∂ξβ(y)

, (2.10)

we explicitly obtain the following zeroth-iterated matrix:

f
(0)
αβ (x, y) =


O 1

mεi(jk) 0 O

− 1
mε(ij)k O 0 O

0T 0T 0 0T

O O 0 O

 δ(x − y) . (2.11)

The tensor components εi(jk), ε(ij)k are given by

εi(jk) =

0 1 0
0 0 1
1 0 0

 , (2.12)

where the i/jk-components outside/inside the parenthe-
ses denote explicitly the vector/tensor fields and behave
like the totally antisymmetric tensor εijk, similar to ε(ij)k.



Yong-Wan Kim et al.: Symplectic embedding of a massive vector–tensor theory with topological coupling 385

Hereafter, let us omit the parentheses; otherwise confu-
sion arises. We also note that in the matrix f

(0)
αβ the O,

0 and 0T symbols stand for a 3 × 3 null matrix, a three-
dimensional column null vector, and its transpose, respec-
tively. Since we easily can see that the matrix f

(0)
αβ is sin-

gular, there exist four-fold infinities related to zero modes,
ν̃

(0)T
α (σ, x), labelled by discrete indices σ = (ε1, ε2) with

ε2 ≡ (
(ε12, 0, 0), (0, ε22, 0), (0, 0, ε32)

)
, where ε1 and ε2 are

arbitrary functions of the continuum label x, explicitly
with components

ν̃(0)T
α (ε1, x) = (0,0, ε1,0) ,

ν̃(0)T
α (ε2, x) = (0,0, 0, ε2) . (2.13)

Therefore, the four-fold zero modes ν̃
(0)T
α (σ, x) generate

four corresponding Lagrangian constraints Ωε1 and Ωε2
defined by∫

dx Ωσ(x) =
∫

dx ν̃(0)T
α (σ, x)

∂

∂ξ(0)α(x)

∫
dy H(0)(y)

= 0 ,

such that

Ωε1 = A0 +
1

2m
εijk∂iBjk = 0 ,

Ωε2 = B0i − 1
m

εijk∂jAk = 0 . (2.14)

These constraints should be conserved in time, which re-
quirement is incorporated into the Lagrangian (2.7), result-
ing in an extension of the symplectic space with auxiliary
fields, α, βi, which correspond to Lagrange multipliers.

As a result, the first-iterated Lagrangian is written

L(1) =
1

4m
εijkȦiBjk− 1

4m
εijkḂijAk+Ωε1 α̇+Ωεi

2
β̇i−H(1) ,

(2.15)
where the first-iterated Hamiltonian is given by

H(1)(ξ) = H(0)|Ωσ=0 (2.16)

=
1
4
BijB

ij − 1
2
AiA

i − 1
2
B0iB

0i +
1
2
A0A

0 .

We have now for the new symplectic variables and their
conjugate momenta

ξ(1)α =
{
Ai, Bij , A0, B0i, α, βi

}
, (2.17)

a(1)
α =

{
1

4m
εijkBjk,− 1

2m
εijkAk, 0,0T, Ωε1 , Ωεi

2

}
.

The first-iterated symplectic matrix is again obtained:

f
(1)
αβ (x, y) =



O 1
m

εijk 0 O 0 1
m

εijk∂k

− 1
m

εijk O 0 O − 1
m

εijk∂k O

0T 0T 0 0T 1 0T

O O 0 O 0 −δij

0T − 1
m

εijk∂k −1 0T 0 0T

1
m

εijk∂k O 0 δij 0 O




× δ(x − y) . (2.18)

One can now easily see that this matrix has an inverse:(
f

(1)
αβ

)−1
(x, y) = (2.19)

O −mεijk ∂i O 0 O

mεijk O 0 F24 0 O

∂i 0T 0 0T −1 0T

O FT
24 0 O 0 δij

0T 0T 1 0T 0 0T

O O 0 −δij 0 O


δ(x − y) ,

where

F24 =

 ∂2 −∂1 0
0 ∂3 −∂2

−∂3 0 ∂1

 . (2.20)

Since there are no more new non-trivial zero modes, the it-
eration process has stopped at this stage. From this inverse
matrix we easily read the desired non-vanishing symplectic
brackets for the vector and the tensor fields{

A0(x), Ai(y)
}

= ∂i
xδ(x − y) ,{

Ai(x), Bjk(y)
}

= mεijkδ(x − y) ,{
B0i(x), Bjk(y)

}
=
(
δij∂k

x − δik∂j
x

)
δ(x − y) .(2.21)

This ends the usual symplectic procedure with only the
four true constraints in (2.14).

Comparing this symplectic scheme with the Dirac for-
mulation, one easily sees that the former has a smaller
number of constraints than that of the latter which has 14
constraints as shown in (4.2) and (4.3) in Sect. 4, one does
not need to define primary constraints, and thus it is more
efficient to get the brackets. In this respect, it is generally
understood that the symplectic method deals only with
true constraints while Dirac’s one is over-constrained.

3 Gauge invariant symplectic embedding

In this section, we embed the first order master Lagrangian
without resorting to the Hamiltonian method, which is the
usual way of getting the corresponding gauge invariant La-
grangian. In the usual BFT embedding scheme, one first
works with the full Dirac constraints and the Hamiltonian
defined in the phase space, converts them into gauge in-
variant ones through the systematic BFT scheme in an
extended phase space, and finally using the path integral
methods performs a series of integrations for the momen-
tum variables to find out a corresponding gauge invari-
ant Lagrangian in an extended configuration space. Com-
pared with this rather long procedure, the gauge invariant
symplectic embedding scheme has the merit of simplicity
based on the singular property of the symplectic matrix
with corresponding “trivial” zero modes which will be de-
fined shortly.
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The idea is simply to consider that the desired gauge
invariant Lagrangian resulting from an embedding proce-
dure would be provided by

LT = LO + LWZ , (3.1)

where the Lagrangian LO is the symmetrized original mas-
ter Lagrangian L(0) in (2.7). Then the symplectic procedure
is greatly simplified, if we make the following “educated”
guess for WZ Lagrangian2, respecting the Lorentz symme-
try:

LWZ = c1∂µθ∂µθ + c2A
µ∂µθ + c3QµνQµν + c4BµνQµν ,

(3.2)
where Qµν = ∂µQν − ∂νQµ. Here θ and Qµ are gauge de-
grees of freedom with respect to the original fields Aµ and
Bµν , respectively. As an Ansatz for a consistent Lorentz
covariant embedding, we shall take the coefficients c1, c2,
c3, c4 to be constants, and we will fix these by the condition
that a finally-iterated symplectic matrix has “trivial” zero
modes on the one hand and these zero modes should gen-
erate no new constraints on the other hand. Furthermore,
we will show that the “trivial” zero modes related with
the finally-iterated symplectic matrix correctly yield the
proper rules of gauge transformation including a first-stage
reducible trivial zero mode associated with a reducible con-
straint.

Now we could read the canonical momenta of the to-
tal Lagrangian

π0 = −c2θ, πθ = 2c1θ̇ ,

π0i = −2c4Qi, Pi = 4c3(Q̇i − ∂iQ0) . (3.3)

Here we have used the partially integrated Lagrangian for
the second and fourth terms in (3.2) in order to easily
show the coincidence with the constraints obtained from
the BFT embedding in Sect. 4. Along with these auxil-
iary variables (momenta), to implement the symplectic
procedure as in the previous section, we write the total
Lagrangian (3.1) in the first ordered form:

L(0)
T =

1
4m

εijkBjkȦi − 1
4m

εijkAkḂij + π0Ȧ
0 + πθ θ̇

+π0iḂ
0i + PiQ̇

i − H(0)
T , (3.4)

where the Hamiltonian is given by

H(0)
T =

1
4
BµνBµν − 1

2
AµAµ − 1

m
εijkB0i∂jAk

2 Similar to the Proca model [14], one could consider the
Ansatz more general and take manifestly Lorentz invariant
functions of the WZ Lagrangian composed of a scalar θ and vec-
tor fields Qµ; however, this consideration only adds an unnec-
essary calculational complication. On the other hand, in recent
works [15], there is made an attempt to make the Lagrangian
embedding a bit systematic; however, in practice it seems very
complicated even in the simplest one-form cases [12–14] includ-
ing the Proca model. Furthermore, it may be intractable to
apply the method to reducible systems, including the massive
vector–tensor theory with topological coupling.

− 1
2m

A0εijk∂iBjk +
1

4c1
π2

θ +
1

8c3
PiP

i

− c1∂iθ∂
iθ − c2A

i∂iθ − c3QijQ
ij − c4BijQ

ij

+ Pi∂
iQ0 + 2c4B

0i∂iQ0 . (3.5)

Then, the initial set of symplectic variables ξ(0)α and
their conjugate momenta a

(0)
α are given by

ξ(0)α = (Ai, Bij , θ, πθ, Q
i, Pi, A

0, B0i, Q0),

a(0)
α = (3.6)(

1
4m

εijkBjk,− 1
2m

εijkAk, πθ, 0, Pi,0T,−c2θ, −2c4Qi, 0
)

.

From the above set of the symplectic variables we read off
the symplectic matrix defined in (2.10) to be

f
(0)
αβ (x, y) =



O 1
m εijk 0 0 O O 0 O 0

− 1
m εijk O 0 0 O O 0 O 0
0T 0T 0 −1 0T 0T −c2 0T 0
0T 0T 1 0 0T 0T 0 0T 0
O O 0 0 O −δij 0 2c4δij 0
O O 0 0 δij O 0 O 0
0T 0T c2 0 0T 0T 0 0T 0
O O 0 0 −2c4δij O 0 O 0
O O 0 0 O O 0 O 0


×δ(x − y) , (3.7)

which is manifestly singular as we observe the last null
row and column, and thus the matrix has non-trivial zero
modes given by

ν(0)T
α (ε1, x) = (0T,0T, 0,−c2ε1,0T,0T, ε1,0T, 0) ,

ν(0)T
α (ε2, x) = (0T,0T, 0, 0,0T, 2c4ε2, 0, ε2, 0) ,

ν(0)T
α (ε3, x) = (0T,0T, 0, 0,0T,0T, 0,0T, ε3) . (3.8)

Applying these zero modes from the left to the equa-
tion of motion we have obtained the constraints φσ ≡
(φε1 , φε2 , φε3):

φε1 = A0 +
1

2m
εijk∂iBjk +

c2

2c1
πθ = 0 ,

φε2 = B0i − 1
m

εijk∂jAk − c4

2c3
Pi = 0 ,

φε3 = ∂iPi + 2c4∂iB
0i = 0 . (3.9)

Next, following the symplectic algorithm for theories
having gauge symmetry [9, 12, 14], we obtain the first-
iterated Lagrangian by enlarging the canonical sector with
the constraints φσ and their associated Lagrangian multi-
pliers (α, βi, γ), respectively, as follows:

L(1)
T =

1
4m

εijkBjkȦi − 1
4m

εijkAkḂij

− 2c2θȦ
0 + πθ θ̇ − 2c4QiḂ

0i + PiQ̇
i + φε1 α̇ + φε2 β̇

i

+φε3 γ̇ − H(1)
T , (3.10)
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where H(1)
T = H(0)|φε3=0 is the first-iterated Hamiltonian.

We have now for the first-level symplectic variables ξ(1)α

and their conjugate momenta a
(1)
α

ξ(1)α = (Ai, Bij , θ, πθ, Q
i, Pi, A

0, B0i, α, βi, γ),

a(1)
α = (3.11)(

1
4m

εijkBjk,− 1
2m

εijkAk,

πθ, 0, Pi,0T, 0,0T, φε1 , φε2 , φε3

)
,

and the first-iterated symplectic matrix now reads

f
(1)
αβ (x, y) =

(
f

(0)
α̂β̂

Mα̂σ

−MT
σα̂ O

)
δ(x − y) , (3.12)

where the submatrix f
(0)
α̂β̂

refers to the ξα̂ = (Ai, Bij , θ,

πθ, Qi, Pi, A0, B0i) sector, and Mα̂σ is a 18 × 5 matrix
defined as Mα̂σ = ∂φσ(y)

∂ξα̂(x) :

Mα̂σ(x, y) =



0 − 1
mεijk∂k

y 0
1
mεijk∂k

y O 0
0 0T 0
c2
2c1

0T 0
0 O 0
0 − c4

2c3
δij ∂i

y

1 0T 0
0 −δij 2c4∂

y
i


δ(x − y) .

(3.13)
Then this symplectic matrix, which contains no null rows
and columns, is seemingly non-singular. Note that we ob-
serve that the Q0 term does not appear in the canonical
sector of the Lagrangian L(1), nor in the Hamiltonian H(1)

T
due to the use of the constraint φε3 . It is also important
to eliminate the Q0 field in the first-iterated level in the
technical point of view. Keeping the Q0 field in the La-
grangian L(1) leads to trouble in the symplectic matrix
because there is always a zero row or column due to the
absence of its conjugate momentum in a(1)(ξ). This pre-
vents us from finding the desired zero modes.

Now, the essential point of the symplectic Lagrangian
embedding [12–15] is this: in order to realize a gauge sym-
metry in this approach, the matrix (3.12) must have at
least one “trivial” zero mode which does not generate a
new constraint. In our case, the solution of∫

dy f
(1)
αβ (x, y)ν(1)

β (y) = 0

yields the following “trivial” zero modes:

ν(1)T
α (ε1, x) = (0T,0T, 0,−c2ε1,0T,0T, ε1,0T, 0,0T, 0),

ν(1)T
α (ε2, x) = (0T,0T, 0, 0,0T, 2c4ε2, 0, ε2, 0,0T, 0),

ν(1)T
α (ε3, x) =

(
∂iε3,0T,− 1

c2
ε3, 0,0T,0T, 0,0T, ε3,0T, 0

)
,

ν(1)T
α (εi

4, x) = (3.14)(
0T, FT

24ε4, 0, 0,− 1
2c4

ε4,0T, 0,0T, 0, ε4, 0
)

,

ν(1)T
α (ε5, x) = (0T,0T, 0, 0, ∂iε5,0T, 0,0T, 0,0T, ε5),

where FT
24 is defined in (2.20), while giving the relations

for the free adjustable coefficients:

c2
2 = 2c1, c2

4 = −c3 , (3.15)

which are obtained from the single-valuedness of the zero
mode functions.

For consistency, we can confirm that these zero modes
do not really generate any new constraint provided we ap-
ply them to the right-hand side of the equations of motion,∫

dx ν(1)
α (σ, x)

∂

∂ξ(1)α(x)

∫
dy H(1)

T (y) = 0 ,

σ = (ε1, ε2, ε3, ε4, ε5) ,

explicitly:∫
dx ν(1)T

α (ε1, x)
δ

δξ(1)α(x)

∫
dy H(1)(y)

= −
∫

dx ε1φε1 = 0 ,∫
dx ν(1)T

α (ε2, x)
δ

δξ(1)α(x)

∫
dy H(1)(y)

=
∫

dx ε2φε2 = 0 ,∫
dx ν(1)T

α (ε3, x)
δ

δξ(1)α(x)

∫
dy H(1)(y)

=
∫

dx ε3

(
1 − c2

2

2c1

)
∂iA

i = 0 ,∫
dx ν(1)T

α (ε4, x)
δ

δξ(1)α(x)

∫
dy H(1)(y)

= −
∫

dx εi
4

(
1 +

c2
4

c3

)
∂jBij = 0 , (3.16)∫

dx ν(1)T
α (ε5, x)

δ

δξ(1)α(x)

∫
dy H(1)(y) = 0 ,

where the third and fourth equations are reconfirmed by
using the relations in (3.15). Since the last equation con-
cerning the zero mode ε5 identically vanishes, this false zero
mode plays no role at all, reflecting that the symplectic
scheme deals only with true constraints.

Therefore, before proceeding to the symplectic embed-
ding algorithm, with these determinations of the coeffi-
cients we should go back to the first-iterated level (3.10)
because the constraints are now not all independent, i.e.,
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we can identify the last two constraints in (3.9) as follows:

∂iφεi
2
− 1

2c4
φε3 = 0 , (3.17)

which means that the gauge invariant Lagrangian we are
seeking is reducible. In this case, in order to resolve the
reducible constraint, we have to modify the auxiliary field
as βi → βi − 2c4∂

iγ. Then, a pair of the symplectic vari-
able and the momentum, (γ, φε3), are absorbed into the
modified βi variables. This also modifies the symplectic ma-
trix (3.12) to a new one which does not have the last row
and column like the one in (3.7). Finding solutions having
new zero modes is exactly equivalent in the corresponding
“trivial” zero modes (3.16) to set the ε5-parameter zero.
This clearly explains why the last zero mode in (3.14) does
not generate any new constraints but vanishes identically.

On the other hand, we could also interpret these results
in view of the linear dependence of the “trivial” zero modes
as follows. In the zero mode solutions (3.14) we have ex-
plicitly inserted the gauge parameters εσ keeping the form
of the gauge transformations (3.21) in mind. Instead, since
we could normalize them by introducing the delta func-
tional3 in the symplectic embedding scheme [14], we then
have the last two zero modes in (3.14), explicitly:

ν
(1)T
α̂,y (ε4, x)

=
(
0T, FT

24, 0, 0,− 1
2c4

e,0T, 0,0T
)

δ(x − y) ,

ν
(1)T
α̂,y (ε5, x)

=
(
0T,0T, 0, 0,∇ε5,0T, 0,0T) δ(x − y) , (3.18)

where the α̂ denote the component fields ξα̂ = (Ai, Bij , θ,
πθ, Qi, Pi, A0, B0i) and e is a unit 3-dimensional vector.
Then, we easily see that the zero mode concerning the
gauge parameter ε5 is related to ν

(1)T
α̂,y (ε4, x) by

ν
(1)T
α̂,y (ε5, x) = −2c4∇ν

(1)T
α̂,y (ε4, x) (3.19)

showing that it is not linearly independent, i.e., reducible.
From this point of view, we would call it, ν

(1)T
α̂,y (ε5, x),

a “first-stage reducible” trivial zero mode. This extends
previously known results [12–15] in which the existence of
“trivial” zero modes, or equivalently no new constraints are
generated in the symplectic framework, implies gauge sym-
metry in the system to include the first-stage reducible case.

As a result, we arrive at the final result on the sym-
plectic embedding of the massive vector–tensor theory with
topological coupling. The desired gauge invariant Lagrang-
ian is now explicitly written

LT = LO + LWZ

3 We can also label the zero modes as follows: ν
(l)
α,y(σ, x)

(σ = 1, . . . , N), where “l” refers to the “level”, α, y stand for
the component, while σ, x label the N -fold infinity of the zero
modes in R3. See for more details [14].

= −1
4
(Bµν − 2c4Qµν)2 +

1
2
(Aµ + c2∂µθ)2

+
1

2m
εµνρσBµν∂ρAσ . (3.20)

This ends the Lagrangian embedding in the symplectic
setup.

Now, in order to discuss the gauge transformation, we
consider the symplectic matrix (3.12). As has been shown
in [9,12], the “trivial” zero modes generate gauge transfor-
mations on the symplectic variable ξ

(1)
α̂ in the sense that

δξα(x) = Σσ̃ν(1)T
α (σ̃, x), σ̃ = (ε1, ε2, ε3, ε4) . (3.21)

We thus obtain the gauge transformations of the symplectic
variables from (3.14) as follows:

δA0 = ε1, δAi = ∂iε3, δθ = − 1
c2

ε3 , (3.22)

δB0i = εi
2, δBij = −(∂iεj

4 − ∂jεi
4), δQi = − 1

2c4
εi
4 ,

except the missing transformation δQ0 which cannot be
obtained at this stage due to the elimination of the Q0

component in the first-iterated level of the procedure. This
is very similar to the BFT Hamiltonian embedding for the
constrained reducible system in which we should introduce
the Q0 field in the path integral measure in order to keep
manifest covariance in the Lagrangian4.

To find out explicitly the gauge transformation for the
Q0 field as well as the existence of possible restrictions to
the gauge parameters, let us consider the total variation
of the Lagrangian (3.20), which transforms as

δLT = (A0 + c2∂0θ)(ε1 − ∂0ε3) (3.23)

+
(

1
m

εijk∂jAk − B0i + 2c4Q0i

)
× (εi

2 + ∂0εi
4 + 2c4∂

iδQ0) .

Therefore, if we identify the gauge parameters as

ε1 = ∂0ε3, εi
2 = −(∂0εi

4 − ∂iε04) , (3.24)

along with a new parameter ε04 defined by

δQ0 = − 1
2c4

ε04 , (3.25)

we can make the total Lagrangian LT gauge invariant.
As a result, this Lagrangian is invariant under the final
gauge transformations:

δAµ = ∂µε3, δθ = − 1
c2

ε3 , (3.26)

δBµν = −(∂µεν
4 − ∂νεµ

4 ), δQµ = − 1
2c4

εµ
4 .

4 We will discuss this explicitly in the next section.
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Therefore, by considering purely the symplectic Lagrangian
embedding, we have found the gauge invariant Lagrangian
as well as their full gauge transformations including δQ0.
Note that the coefficients c2, c4 can be either rescaled
on the variables as (θ, Qµ) → (c2θ, 2c4Q

µ), or fixed as
c2 = ±1, c4 = ± 1

2 . Then the resulting Lagrangian is re-
duced to the well-known gauge embedded form of the mas-
sive vector–tensor theory with topological coupling,

LT = −1
4
(Bµν − Qµν)2 +

1
2
(Aµ + ∂µθ)2

+
1

2m
εµνρσBµν∂ρAσ , (3.27)

where we set the free adjustable coefficients c2 = 1 and
c4 = 1/2, and this Lagrangian is invariant under

δAµ = ∂µε, δθ = −ε ,

δBµν = ∂µεν − ∂νεµ, δQµ = εµ , (3.28)

where the gauge parameters are redefined by ε = ε3 and
εµ = −εµ

4 .

4 Revisited BFT embedding

In this section, we will compare the symplectic Lagrangian
embedding with the previous work [7] of the BFT Hamil-
tonian one, which makes a second-class constraint Hamil-
tonian system into the corresponding first-class one in a
systematic way.

First, let us start with the canonical momenta from the
symmetrized form of the Lagrangian (2.1) with π0 = 0,
πi = 1

4mεijkBjk, π0i = 0, and πij = − 1
2mεijkAk in order

to analyze the Hamiltonian structure of the model. Then
we have obtained the primary Hamiltonian in Dirac’s ter-
minology:

Hp =
1
4
BµνBµν − 1

2
AµAµ − 1

m
εijkB0i∂jAk (4.1)

− 1
2m

A0εijk∂iBjk + λ0π0 + λiΩi + Σ0iπ0i + ΣijΩij ,

where the ten primary constraints are given by

π0 ≈ 0, Ωi ≡ πi − 1
4m

εijkBjk ≈ 0 ,

π0i ≈ 0, Ωij ≡ πij +
1

2m
εijkAk ≈ 0 , (4.2)

along with their associated Lagrange multipliers λ0, λi,
Σ0i, and Σij .

There are four additional secondary constraints which
are obtained from the time stability conditions of the pri-
mary constraints π0 and π0i, thus:

Λ ≡ A0 +
1

2m
εijk∂iBjk ≈ 0 ,

Λi ≡ B0i − 1
m

εijk∂jAk ≈ 0 . (4.3)

As expected, the Lagrange multipliers Σij , λi correspond-
ing to the constraints Ωi, Ωij are fixed under the time
stability condition, and the other ones, λ0, Σ0i, are de-
termined by the consistency requirement of the secondary
constraints Λ, Λi, respectively.

Then the full set of these constraints constitutes the
constraint algebra of second class as follows:

{π0, Λ} = −δ(x − y) ,

{π0i, Λj} = −δijδ(x − y) ,

{Ωi, Ωjk} = − 1
m

εijkδ(x − y) , (4.4)

where we have redefined the secondary constraints by Λ+
∂iΩi → Λ = ∂iπi + A0 + 1

4mεijk∂iBjk ≈ 0, and Λi +
∂jΩij → Λi = ∂jπij + B0i − 1

2mεijk∂jAk ≈ 0. These new
definitions make the constraint algebra have no derivative
terms. As a result, we have easily obtained the following
Dirac brackets:

{A0(x), Ai(y)}D = ∂i
xδ(x − y) ,

{Ai(x), Bjk(y)}D = −mεijkδ(x − y) ,

{B0i(x), Bjk(y)}D = (δij∂k
x − δik∂j

x)δ(x − y) ,

{Ai(x), πj(y)}D =
1
2
δi
jδ(x − y) ,

{A0(x), πij(y)}D = − 1
2m

εijk∂k
xδ(x − y) ,

{πi(x), B0j(y)}D =
1

2m
εijk∂k

xδ(x − y) ,

{πi(x), πjk(y)}D =
1

4m
εijkδ(x − y) ,

{Bij(x), πkl(y)}D =
1
2
(δi

kδj
l − δj

kδi
l )δ(x − y) (4.5)

for the massive vector–tensor theory with topological cou-
pling.

Now, let us briefly recapitulate the BFT Hamiltonian
embedding for this theory. For that purpose, we have intro-
duced auxiliary fields having involutive relations in which
not only modified new constraints in the enlarged space
are strongly vanishing with each other, but also they have
the Poisson brackets vanishing, not the Dirac brackets,
with physical quantities such as Hamiltonian and the fields
themselves. Through this BFT prescription, after introduc-
ing auxiliary fields paired as (θ, πθ), (Qi, Pi), and (Φi, Φjk),
we have obtained the strongly involutive primary

π̃0 = π0 + θ, π̃0i = π0i + Qi ,

Ω̃i = Ωi + Φi, Ω̃ij = Ωij +
1
m

Φij , (4.6)

and the secondary constraints

Λ̃ = Λ + πθ = A0 +
1

2m
εijk∂iBjk + πθ ,

Λ̃i = Λi + Pi = B0i − 1
m

εijk∂jAk + Pi . (4.7)
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Moreover, the strongly involutive physical fields are also ob-
tained:

Ã0 = A0 + πθ, Ãi = Ai + ∂iθ − 1
2
εijkΦjk ,

π̃0 = π0 + θ, π̃i = πi − 1
2m

εijk∂jQk +
1
2
Φi ,

B̃0i = B0i + P i, B̃ij = Bij − (∂iQj − ∂jQi) + mεijkΦk ,

π̃0i = π0i + Qi, π̃ij = πij − 1
2m

εijk∂kθ +
1

2m
Φij .

(4.8)

Note that all these physical fields are terminated in the
first order of the auxiliary fields, and the Poisson brackets
of these fields in the extended phase space are exactly the
same as the Dirac brackets (4.5) in the original phase space.

On the other hand, by using the strongly involutive
physical fields (4.8), we have also obtained the extended
canonical Hamiltonian:

H̃c =
1
4
(Bij − Qij)2 +

1
2
mεijk(Bij − Qij)Φk − 1

2
m2ΦiΦ

i

− 1
2
(Ai + ∂iθ)2 +

1
2
εijk(Ai + ∂iθ)Φjk +

1
4
ΦijΦ

ij

+
1
2
(B0i + Pi)2 − 1

m
εijk(B0i + P i)∂jAk

− 1
m

(B0i + Pi)∂jΦ
ij − 1

2
(A0 + πθ)2

− 1
2m

(A0 + πθ)εijk∂iBjk + (A0 + πθ)∂iΦ
i

+πθΛ̃ + PiΛ̃i , (4.9)

where the last two terms are added to generate Gauss’
constraints corresponding to the constraints, π̃0, π̃0i, con-
sistently. Then the generating functional for the extended
first-class systems is given by

Z =
∫

DAµDπµDBµνDπµνDθDπθDQiDPiDΦiDΦij

×δ(ϕ̃α)δ(Γβ) det | {ϕ̃α, Γβ} | eiS , (4.10)

where

S =
∫

d4x

[
πµȦµ + π0iḂ

0i +
1
2
πijḂ

ij + πθ θ̇ + PiQ̇
i

+
1
2
εijkΦiΦ̇jk − H̃c

]
, (4.11)

and the Γα are appropriate gauge fixing functions which
have non-vanishing Poisson brackets with the modified
first-class constraints ϕ̃α = (π̃0, π̃0i, Λ̃, Λ̃i, Ω̃i, Ω̃ij).

Now, by performing the momentum integrations in the
generating functional as usual [14], we have finally obtained
the gauge invariant Lagrangian corresponding to H̃c:

Z =
∫

DAµDBµνDθDQµDΦiDΦij

×δ(Q0)δ(Γβ)det | {ϕ̃α, Γβ} | eiST , (4.12)

where

ST =
∫

d4x (LGE + LNWZ) , (4.13)

LGE = −1
4
(Bµν − Qµν)2 +

1
2
(Aµ + ∂µθ)2

+
1

2m
εµνρσBµν∂ρAσ,

LNWZ (4.14)

=
1
2
εijkΦiΦ̇jk +

[
Fi0 − m

2
εijk(Bjk − Qjk) +

m2

2
Φi

]
Φi

−
[
1
2
εijk(Ai + ∂iθ) +

1
m

∂kB0j +
1

2m
∂0Bjk +

1
4
Φij

]
Φjk ,

where LGE is the gauge embedded Lagrangian and LNWZ
is a new type of WZ Lagrangian. Note that we have in-
troduced the delta functional of the variable Q0 in the
measure which serves to make the final gauge embedded
Lagrangian LGE manifestly covariant.

On the other hand, the infinitesimal gauge transforma-
tions for the fields are given by

δAµ = −∂µεA + δµ
j εj

A ,

δBµν = ∂µεν
B − ∂νεµ

B + (εkl
B − εlk

B )δµ
k δν

l ,

δθ = εA, δQµ = εµ
B ,

δΦi =
1
m

εijkεB
jk, δΦij = −εijkεA

k (4.15)

from the generator of the gauge transformation5, the first-
class constraints (4.6). The transformations related to the
gauge symmetry are exactly the same as the ones (3.26)
obtained from the symplectic Lagrangian scheme. On the
other hand, the other parameters εi

A, εij
B in (4.15) are not

related with the gauge symmetry. These parameters are
associated with the symplectic structure of the topological
coupling, which are absent in the symplectic Lagrangian
scheme. Since in the latter scheme the topological coupling
term is already of first order, we have no need to intro-
duce the auxiliary fields (momenta) which have become
the gauge generators in the former scheme. As a result,
the new type of WZ Lagrangian, which may lack manifest
covariance, is indeed invariant under the extended trans-
formations including these parameters. Moreover, by fixing
unitary gauge conditions such as Φi = Φij = 0, the new
type of the WZ Lagrangian identically vanishes, while the
strongly involutive constraints Λ̃, Λ̃i in (4.6) become ex-
actly the same as the true ones φε1 , φε2 in (3.9) generated
from the symplectic embedding procedure, respectively.

It is also important to note that in the generating func-
tional (4.12) there exists the delta functional of the variable
Q0 which transforms as δQ0 = ε0B . We have introduced this

5 See [7] for details.
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new field to make the final Lagrangian manifestly covari-
ant. Even without this Q0 field, we can show that the re-
sulting Lagrangian successfully reproduces the whole BFT
embedded constraint structure. However, in that case, it
will lose manifest covariance. Indeed, we have introduced
the new variable Q0 in order to keep manifest covariance,
while giving up the irreducible property between the con-
straints [7].

5 Conclusion

In this paper we have quantized a massive vector–tensor
theory with topological coupling which is the first order
master action of the Proca and the Kalb–Ramond models.
We have adopted the symplectic scheme since it provides
a relatively simple way of getting Dirac brackets rather
than obtaining these brackets in the Dirac formalism for
the Lagrangians having seemingly complicated antisym-
metric tensor fields. In particular, we have shown that our
model has only four constraints in the symplectic scheme in
contrast to the Dirac (or BFT) formalism, having fourteen
constraints. Moreover, we have demonstrated how the BFT
embedding scheme of a second-class system into a first-class
one can be realized in the framework of the symplectic ap-
proach to constrained systems. Rather than proceeding
iteratively as in the BFT embedding approach, we have
greatly simplified the calculation by making use of mani-
fest Lorentz invariance in our Ansatz for the WZ term.

Furthermore, we have explicitly shown that the re-
ducibility between the constraints in the resulting gauge
invariant Lagrangian comes from the absence of the Q0

term, which naturally arises in analyzing the model’s sym-
plectic structure. Requiring the gauge invariance of the to-
tal Lagrangian, we have successfully recovered it and thus
have obtained the full gauge transformations consistently,
while showing that all the zero modes solutions are not lin-
early independent, i.e., there exists a first-stage reducible
trivial zero mode.

Similar to the symplectic Lagrangian embedding, we
have shown in the BFT Hamiltonian embedding that the
reducibility between the constraints is also related to the
Q0 component, and have successfully reconstructed the
Lorentz covariant gauge embedded Lagrangian by using
the delta functional of the Q0 field in the path integral mea-
sure. However, in this scheme, which carries out the rigor-
ous converting procedure from the second-class constraints
to the effective first-class ones, due to the appearance of the
constraints Ωi, and the Ωij , in (4.6), originating from the
symplectic structure of the theory, we cannot keep Lorentz
covariance as seen in the new type of WZ Lagrangian. Nev-
ertheless, we have shown that the total action including
the NWZ action is invariant under the extended gauge
transformations. Compared with this, since in the sym-
plectic Lagrangian embedding we do not need to classify
the constraints as second or first, we could freely require
Lorentz covariance without any inconsistency. In short, a
gauge embedded extension in the symplectic scheme is only
related with the Lorentz covariant action while the usual
symplectic scheme concerns only true constraints.

Finally, the method followed by this work is worthwhile
in itself because there is no known systematic method yet
except for the simplest one-form cases [12–14]. In this re-
spect, we have in a new fashion generalized the symplectic
Lagrangian embedding procedure to include highly non-
trivial tensor fields which exhibit, for example, the exis-
tence of the first-stage reducible trivial zero mode among
the others related to the reducibility of the theory.
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